# Including feed intake data from U.S. Holsteins in genomic prediction

#### Paul VanRaden,<sup>1</sup> Jeff O'Connell,<sup>2</sup> Erin Connor,<sup>1</sup> Mike VandeHaar,<sup>3</sup> Rob Tempelman,<sup>3</sup> and Kent Weigel<sup>4</sup>

<sup>1</sup>USDA, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA <sup>2</sup>University of Maryland, Baltimore, MD, USA <sup>3</sup>Michigan State University, East Lansing, MI, USA <sup>4</sup>University of Wisconsin, Madison, WI, USA

paul.vanraden@ars.usda.gov



# Feed intake topics



- Residual feed intake (RFI) as a new trait
- Data included, models, and parameters
- Reliability of predictions
- Economic value of feed saved
- Reporting of feed intake evaluations



#### Feed intake data

| 8.8 |    |
|-----|----|
|     | Ca |

| Research herd<br>Univ. of Wisconsin and<br>US Dairy Forage Res. Ctr. | Cows<br>1,390 | Records<br>1,678 | Researchers<br>Weigel,<br>Armentano |
|----------------------------------------------------------------------|---------------|------------------|-------------------------------------|
| Iowa State Univ.                                                     | 953           | 1,006            | Spurlock                            |
| ARS, USDA (Beltsville, MD)                                           | 534           | 834              | Connor                              |
| Univ. of Florida                                                     | 491           | 582              | Staples                             |
| Michigan State Univ.                                                 | 273           | 315              | VandeHaar,<br>Tempelman             |
| Purina Anim. Nutr. Ctr. (MO)                                         | 151           | 184              | Davidson                            |
| Virginia Tech                                                        | 93            | 93               | Hanigan                             |
| Miner Agric. Res. Inst. (NY)                                         | 58            | 58               | Dann                                |
| All                                                                  | 3,965         | 4,823            | \$5 million<br>AFRI grant           |

#### Genotypes of research cows

- Chip densities (number of markers) used
  - 502 high density (777K)
  - 1341 GHD or GH2 (77K or 140K)
  - 1251 50K or ZMD (50K)
  - 411 low density (7K to 20K)
- Imputed to 60,671 subset used officially





VanRaden

#### National RFI genomic evaluation

- RFI from research cows already adjusted for phenotypic correlations with milk net energy, metabolic body weight, and weight change
- Genetic evaluation model: RFI = breeding value + permanent environment + herd×sire + management group + age-parity + b<sub>1</sub>(inbreeding) + b<sub>2</sub>(GPTA<sub>milk net energy</sub>) + b<sub>3</sub>(GPTA<sub>BW</sub> <sub>composite</sub>)
- Remove remaining genetic correlations and include 60 million nongenotyped Holsteins
- Genomic model:
   Predict 1.4 million genotyped Holsteins



#### Variance estimates for RFI (and SCS)

| Parameter                         | RFI  | SCS   |
|-----------------------------------|------|-------|
| Heritability (%)                  | 14   | 16    |
| Repeatability (%)                 | 24   | 35    |
| Phenotypic correlation with yield | 0.00 | -0.10 |
| Genetic correlation with yield    | 0.00 | -0.03 |

SCS provided a 2nd trait with similar properties, which allowed genomic predictions from research cows to be compared with national SCS predictions



# Estimation of genomic reliability

- Correlation of genomic predictions from research cow data (GEBV<sub>r</sub>) vs. national data (GEBV<sub>n</sub>) for SCS
  - Observed REL = corr(GEBV<sub>r</sub>, GEBV<sub>n</sub>)<sup>2</sup> \* national REL
- 5-way cross-validation
  - Use RFI records of 80% of cows to predict RFI records of remaining 20%
  - Exclude cows from the validation data if they had daughters in the reference data
  - Observed REL =  $corr(GEBV_r, RFI)^2$  / heritability
- Choose discount to match computed to observed REL



#### Computed vs. actual GREL for SCS

- Expected genomic reliability of young animals was 19% for both RFI and SCS using standard discount of 0.7
- SCS GPTA correlated by only 0.39 for national vs. research-cow reference data
- Observed REL of SCS was  $(0.39)^2 \times 72\% = 11\%$
- Genomic REL was discounted by a factor of 0.3 to agree with Var(PTA) for RFI and observed REL of SCS



#### 5-way cross-validation

| Trait | Reliability           | Reliability |         |            |
|-------|-----------------------|-------------|---------|------------|
|       | method                | Traditional | Genomic | Difference |
| RFI   | Observed              | 13.4        | 18.1    | +4.7       |
|       | Expected <sup>1</sup> | 14.0        | 21.2    | +7.2       |
| SCS   | Observed              | 17.6        | 23.0    | +5.4       |
|       | Expected <sup>1</sup> | 16.4        | 24.7    | +8.3       |

<sup>1</sup>Expected REL calculated from parent average for cows not in the reference, or from genomic REL calculated using a discount factor of 0.3.



# RFI reliability by animal group



| Animal group                                  | RFI Reliability (%) |                      |
|-----------------------------------------------|---------------------|----------------------|
|                                               | Traditional         | Genomic <sup>1</sup> |
| 3,965 cows with RFI phenotypes                | 30                  | 34                   |
| Top 10 <b>sires</b> with most RFI daughters   | 78                  | 85                   |
| Top 100 Net Merit <b>progeny tested</b> sires | 8                   | 16                   |
| Top 100 Net Merit <b>young bulls</b>          | 3                   | 12                   |
| 1.5 million genotyped Holsteins               | 5                   | 13                   |
| 60 million non-genotyped Holsteins            | 3                   | 3                    |

<sup>1</sup>Computed with discount factor of 0.3



#### **Economic values**



| Statistic                             | Milk production<br>(3.5% F, 3.0% P) | Dry matter<br>intake | Residual feed intake |
|---------------------------------------|-------------------------------------|----------------------|----------------------|
| Price/pound                           | \$0.17                              | \$0.12               | \$0.12               |
| Mean income or<br>cost/lactation      | \$4,250                             | -\$1,992             | 0                    |
| Lifetime value/pound (2.8 lactations) | \$0.253                             | -\$0.336             | -\$0.336             |
| Relative value (% of NM\$)            | 36%                                 |                      | -16%                 |

- Since 2000, Net Merit \$ has selected for smaller cows using type traits (body weight composite) to reduce expected feed intake (-6% of NM\$)
- Economic values for yield and BWC already account for correlated feed intake, and RFI measures uncorrelated intake



# **Reporting feed efficiency**



- Feed efficiency expected from yield and type traits
  - FE\$ is milk income feed cost expected from PTAs for milk, fat, protein, and body weight composite (type)
  - Current definition used in TPI
  - New FE\$ = FE\$ RFI\$
- Feed saved (used in AUS, also USA proposal)
  - FeedSaved\$ combines RFI\$ and regression on body weight composite, but not yield trait regressions





- Ratio of progress from new vs. old index is square root of [REL<sub>NM\$</sub>(194<sup>2</sup>) + REL<sub>RFI</sub>(70<sup>2</sup>)]/[REL<sub>NM\$</sub>(194<sup>2</sup>)]
- Ratio of progress is small (1.01) because REL<sub>RFI</sub> (12%) is much lower than REL<sub>NM\$</sub> (75%)
- Extra 1% faster progress is worth \$4.5 million per year to the U.S. dairy industry



#### Early feed intake studies at USDA

- Hooven et al., JDS 51:1409–1419, 1968
  - 661 lactations of 318 Holstein cows at Beltsville
  - Genetic correlation (feed efficiency, milk energy) = 0.92
- Hooven et al., JDS 55:1113–1122, 1972
  - 10-mo intake trials for 425 cows
  - 30-d trial (month 5) gave 89% of progress

# Conclusions

- Producers and researchers have always wanted to measure and select for feed efficiency
- RFI could get ~16% of relative emphasis in net merit, but low REL of ~12% for young animals will limit progress
- Genomics can multiply feed intake information from a few herds to thousands of other herds
- Higher REL will require more research herds or international cooperation



# Acknowledgments

- Agriculture and Food Research Initiative Competitive Grant #2011-68004-30340 from USDA National Institute of Food and Agriculture (feed intake funding)
- USDA-ARS project 1265-31000-101-00, "Improving Genetic Predictions in Dairy Animals Using Phenotypic and Genomic Information" (AGIL funding)
- Council on Dairy Cattle Breeding and dairy industry contributors for pedigree and genomic data
- Jim Liesman (MSU) for merging and editing phenotypes
- George Wiggans for managing genotypes



#### 6-week or 4-week trials



|                                                   | 6-week | 4-week |
|---------------------------------------------------|--------|--------|
| Days of feed intake                               | 42     | 28     |
| Cows recorded                                     | 4,621  | 202    |
| RFI mean                                          | 0      | 0      |
| RFI standard deviation (kg/day)                   | 1.68   | 1.75   |
| Correlation with 6-week trial                     | 1.00   | 0.96   |
| Weighted in statistical model                     | 1.00   | 0.92   |
| Approximate cost of recording (+1 week pre-trial) | \$700  | \$500  |

